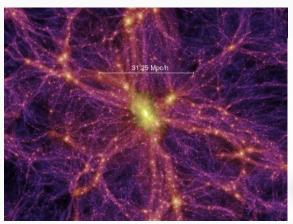
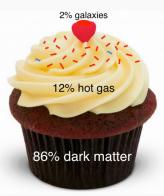
Enhancing Cluster Science with LSST and External Data Sets¹

¹Not a cross-correlation talk!²
²as such


Adam Mantz (KIPAC)


Cross-correlation Spectacular with LSST: Exploring Synergies Between LSST and External Datasets to Discover Fundamental Physics

May 24, 2016

Unnecessary introduction

Galaxy cluster: a very massive, bound collection of dark matter, ionized gas, and galaxies ($M \gtrsim 10^{14} \, M_{\odot}$, $kT \gtrsim 1 \, \mathrm{keV}$).

Cluster cosmology

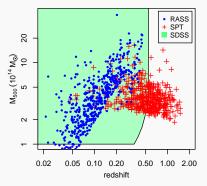
- ► Mass function ← growth of structure, expansion, neutrino mass
- Gas-mass fractions (standard quantity) \leftarrow cosmic expansion and Ω_{m}
- ▶ Clustering of clusters ← growth of structure, expansion
- ► X-ray and mm pressure measurements ← cosmic expansion
- ▶ Bulk flows ← growth of structure, expansion
- ▶ Merger statistics ← dark matter cross section
- ▶ Internal structure ← dark matter, gravity
- **.** . . .

Cluster cosmology

- lacktriangle Mass function \leftarrow growth of structure, expansion, neutrino mass
- Gas-mass fractions (standard quantity) \leftarrow cosmic expansion and Ω_{m}
- ▶ Clustering of clusters ← growth of structure, expansion
- ➤ X-ray and mm pressure measurements ← cosmic expansion
- ▶ Bulk flows ← growth of structure, expansion
- ▶ Merger statistics ← dark matter cross section
- ▶ Internal structure ← dark matter, gravity
- **.** . . .

Cluster surveys

Three main survey strategies (increasing wavelength order):


- X-ray: emission from hot intracluster medium (ICM)
- ▶ optical/IR: cluster galaxies and lensed background galaxies
- mm: SZ effect (CMB spectral distortion) due to ICM

Cluster surveys

Three main survey strategies (increasing wavelength order):

- X-ray: emission from hot intracluster medium (ICM)
 - ightarrow Most massive clusters to high z, groups at lower z
- optical/IR: cluster galaxies and lensed background galaxies
 - \rightarrow High completeness to low masses
- mm: SZ effect (CMB spectral distortion) due to ICM
 - \rightarrow Massive clusters at any redshift

Current/future large surveys

	2016	2017	2018	2019	2020	2021	2022	2023
DES								
AdvACT								
SPT-3G								
eROSITA								
Euclid								
CMB-S4								
LSST								

	2024	2025	2026	2027	2028	2029	2030	2031
Euclid								
CMB-S4								
LSST								
2331								

Current/future large surveys

- 1. In 10 yr, we will have a much more comprehensive view of clusters in the Universe.
- 2. LSST is not (by itself) the ultimate cluster survey.

- 1. Predicted halo mass function from simulations
- 2. Observed number of clusters as a function of z and survey signal

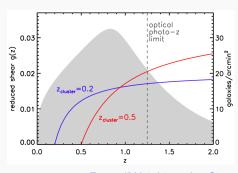
3. Stochastic relation between mass and observable signal(s)

- 1. Predicted halo mass function from simulations
 - ▶ Big topic, but assume it's in hand for this talk.
- 2. Observed number of clusters as a function of z and survey signal

3. Stochastic relation between mass and observable signal(s)

- 1. Predicted halo mass function from simulations
 - ▶ Big topic, but assume it's in hand for this talk.
- 2. Observed number of clusters as a function of z and survey signal
 - Cluster finding
 - Confirmation
 - ▶ Redshift measurement
- 3. Stochastic relation between mass and observable signal(s)

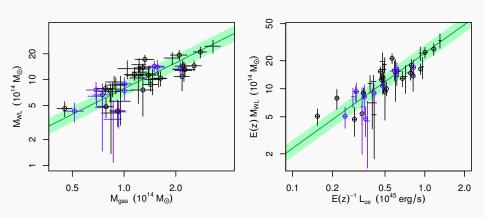

- 1. Predicted halo mass function from simulations
 - Big topic, but assume it's in hand for this talk.
- 2. Observed number of clusters as a function of z and survey signal
 - Cluster finding
 - ► Confirmation
 - Redshift measurement
- Stochastic relation between mass and observable signal(s)
 - Requires mass measurements, including for individual clusters
 - Accuracy and precision are both important
 - ▶ No mass proxy is simultaneously accurate and precise!


- 1. Predicted halo mass function from simulations
 - ▶ Big topic, but assume it's in hand for this talk.
- 2. Observed number of clusters as a function of z and survey signal
 - Cluster finding
 - Confirmation
 - Redshift measurement
- Stochastic relation between mass and observable signal(s)
 - Requires mass measurements, including for individual clusters
 - Accuracy and precision are both important
 - ▶ No mass proxy is simultaneously accurate and precise!

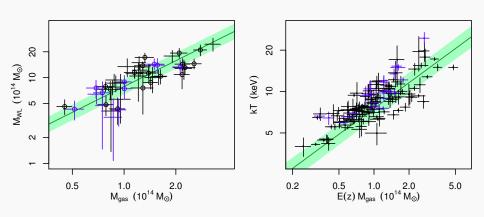
Optical surveys like LSST can provide several of these.

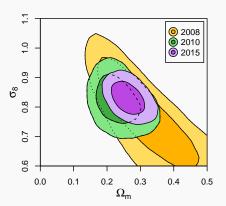
Accurate (absolute) masses: galaxy-cluster weak lensing

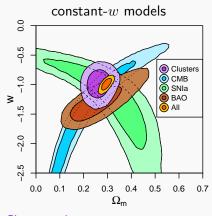
- ▶ Unbiased with good data, careful analysis, accurate centers
- ▶ Progressively harder at higher cluster z current methods can probably be pushed to $z\sim0.9$ (from the ground space would be nice)



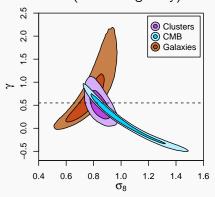
From "Weighing the Giants"


Precise (relative) masses: X-ray proxies


- ightharpoonup Center-excised luminosity, gas mass, temperature, $Y_{\rm X}$...
- ▶ Intrinsic scatters $\lesssim 15\%$, requiring ~ 100 –1000's of counts


Precise (relative) masses: X-ray proxies

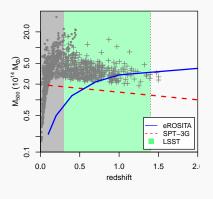
- ightharpoonup Center-excised luminosity, gas mass, temperature, $Y_{\rm X}$...
- ▶ Intrinsic scatters $\lesssim 15\%$, requiring ~ 100 –1000's of counts


- Improvement has been rapid
- Significant gains to be had from both improving absolute mass calibration (accuracy) and obtaining precise relative masses (precision).

Clusters alone:

$$\Omega_{\rm m} = 0.261 \pm 0.031$$
 $\sigma_8 = 0.831 \pm 0.036$
 $w = -0.98 \pm 0.15$

growth index (modified gravity) models


Clusters alone:

$$\Omega_{\rm m} = 0.257 \pm 0.030$$

$$\sigma_8 = 0.833 \pm 0.048$$

$$\gamma - 0.55 = -0.07 \pm 0.19$$

Where would new projects have an impact?

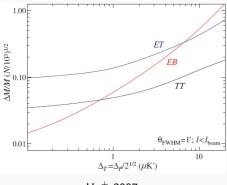
- ► Spectroscopy to improve photo-z's
- ▶ High-z confirmation and photo-z's
- ▶ High-z absolute mass calibration
- Relative mass proxies at high-z and low mass

Spectroscopy

- lacktriangle Photo-z training sets for faint galaxies behind and in clusters
- Impacts cluster finding and (especially) mass calibration

Need continuing access to ground- and space-based facilities, plus future projects like DESI, HSC-PFS, WFIRST, etc.

Confirmation/photometry


- ► Confirmation and photo-z's at high redshifts
- Galaxy-cluster lensing (absolute masses) at high redshifts?

Need continuing access to large ground-based and space-based facilities (e.g. VLT, Magellan, Keck, TMT/GMT, WFIRST, \dots)

Absolute masses at $z \gtrsim 1$

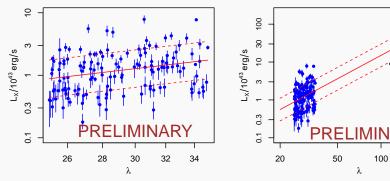
Not yet clear what the best strategy will be yet...

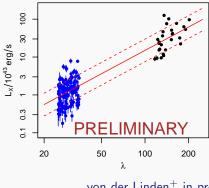
- ▶ Push galaxy-cluster lensing to the limit?
- Self-calibrate using cluster clustering?
- Velocity dispersions (lots of spectra)?
- ► CMB-cluster weak lensing potential synergy with CMB-S4

Hu⁺ 2007

Relative mass proxies

- ▶ Key probe of survey observable—mass relation, evolution & scatter
- Also constrains mis-centering/projection systematics (lensing and optical cluster-finding)
- X-ray/SZ surveys will provide some information for free

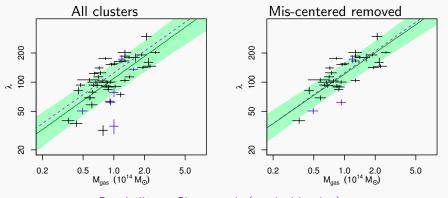

X-ray facilities:


	launch	area/Chandra	HEW
Chandra	1999	1	1"
XMM	1999	4	16''
eROSITA (survey)	2018	16	28"
eROSITA (pointed)			16''
ATHENA	2028	50	5"
X-ray Surveyor	$\gtrsim 2030$?	50	< 1"

Current events: calibrating optical richness

Approach 1: Complete X-ray follow-up of richness-selected clusters

- ▶ Includes 1st large ($N \sim 150$) sample of typical- λ clusters
- \triangleright Constrains scaling, scatter of λ , and centering/projection, as a function of mass



von der Linden⁺ in prep.

Current events: calibrating optical richness

Approach 2: Richness scaling of massive, X-ray selected clusters

▶ Non- λ selection, but richer information per cluster

Purple line = Simet et al. (stacked lensing)

AM⁺ in prep.

Summary

- ▶ By the 10 yr LSST era, our map of clusters in the Universe will be pretty comprehensive.
- ► Targeted investment in supporting observations can significantly enhance the science return of these new cluster catalogs.
- Much of what we'd like to do is very straightforward, but there are also some exciting new avenues. There are places where new data clearly benefits multiple probes/projects (e.g. spectroscopy, CMB).